Stewart and his co-workers of the University of Maryland for making available to us the X-RAY 67 computer programs used here.

References

Ansell, G. B., Moore, D. W. \& Nielsen, A. T. (1970). Chem. Commun. p. 1602.

Ansell, G. B., Moore, D. W. \& Nielsen, A. T. (1971). J. Chem. Soc. B, p. 2376.

Berestovitskaya, V. M., Sopova, A. S. \& Perekalin, V. V. (1967). Khim. Geterotsikl. Soedin. 3, 396.

Dominianni, S. J., Chaney, M. O. \& Jones, N. D. (1970). Tetrahedron Lett. p. 4735.
Hanson, h. P., Herman, f., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040.

Acta Cryst. (1972). B28, 3196

Crystal Structures of $\mathrm{Ca}_{2} \mathrm{Fe}_{1 \cdot 43} \mathrm{Al}_{0 \cdot 57} \mathrm{O}_{5}$ and $\mathrm{Ca}_{2} \mathrm{Fe}_{1 \cdot 28} \mathrm{Al}_{0 \cdot 72} \mathrm{O}_{5}{ }^{*}$

By A.A.Colville
Department of Geology, California State College at Los Angeles, Los Angeles, California 90032, U.S.A.
and S. Geller
Department of Electrical Engineering, University of Colorado, Boulder, Colorado 80302, U.S.A.

(Received 26 April 1972)

Abstract

The crystal structures of $\mathrm{Ca}_{2} \mathrm{Fe}_{1 \cdot 43} \mathrm{Al}_{0.55} \mathrm{O}_{5}$ and $\mathrm{Ca}_{2} \mathrm{Fe}_{1 \cdot 28} \mathrm{Al}_{0.72} \mathrm{O}_{5}$ have been determined from singlecrystal data obtained with a Buerger-Supper-Pace-Picker automatic diffractometer. Both are isostructural with brownmillerite, belonging to space group $\operatorname{Ibm2}\left(C_{2 v}^{22}\right)$. Lattice constants are $a=5.588(5), b=$ 14.61 (2), $c=5 \cdot 380$ (5) \AA and $a=5.583$ (5), $b=14.58$ (2), $c=5.374$ (5) \AA respectively. The distribution of the Al^{3+} ions in these crystals and in brownmillerite ($\mathrm{Ca}_{2} \mathrm{FeAlO}_{5}$), all synthesized under very similar conditions, is such that $75-76 \%$ of the Al^{3+} ions are in tetrahedral sites. The results give new information on the magnetic phase relations of the $\mathrm{Ca}_{2} \mathrm{Fe}_{2-x} \mathrm{Al}_{x} \mathrm{O}_{5}$ system.

Introduction

Crystals of $\mathrm{Ca}_{2} \mathrm{Fe}_{2} \mathrm{O}_{5}$ have their Fe^{3+} ion moments directed along the crystallographic c axis (Gonser, Grant, Wiedersich \& Geller, 1966; Corliss, Hastings, Kunnmann \& Banks, 1966; Friedman, Shakad \& Shtrikman, 1967; Takeda, Yamaguchi, Tomiyoshi, Sukase, Sugimoto \& Watanabe, 1968); the most probable magnetic space group of $\mathrm{Ca}_{2} \mathrm{Fe}_{2} \mathrm{O}_{5}$ is $P \mathrm{~cm} \mathrm{~m}^{\prime} n^{\prime}$. In brownmillerite, $\mathrm{Ca}_{2} \mathrm{FeAlO}_{5}$, the Fe^{3+} ion moments are aligned along the a axis (Grant, Geller, Wiedersich, Gonser \& Fullmer, 1968); the most probable magnetic space group was thought to be $I c^{\prime} m^{\prime} m^{\prime}$ because although the crystal structure had not been worked out in detail, Icmm was reported to be the most probable space group (Büssem, 1937, 1938; Smith, 1962).

A refinement of the structure of $\mathrm{Ca}_{2} \mathrm{Fe}_{2} \mathrm{O}_{5}$ (Bertaut, Blum \& Sagnières, 1959) was carried out (Colville, 1970) to verify the results of a Mössbauer spectroscopic study (Grant, 1969) which showed that the oxygen octahedra and tetrahedra about the Fe^{3+} ions must be considerably distorted. A determination of the crystal structure of brownmillerite (Colville \& Geller, 1971) showed that its most probable space group is Ibm 2 .

[^0](In fact, Icmm would have required one unreasonably short tetrahedral cation-oxygen distance.) It was proposed (Geller, Grant \& Colville, 1971) that the most probable magnetic space group for brownmillerite is $I_{P} b m^{\prime} 2^{\prime}$.

A Mössbauer spectroscopic investigation (Geller, Grant \& Fullmer, 1970; see also Geller, Grant \& Gonser, 1971) of intermediate compositions (that is, $0<x<1$ in $\mathrm{Ca}_{2} \mathrm{Fe}_{2-x} \mathrm{Al}_{x} \mathrm{O}_{5}$) showed that there is a range of composition and of temperature in which two magnetic structures occur simultaneously. In the papers thus far published (Geller et al., 1970; Geller et al., 1971) it was thought that these corresponded to the $P c m^{\prime} n^{\prime}$ of $\mathrm{Ca}_{2} \mathrm{Fe}_{2} \mathrm{O}_{5}$ and (originally $I c^{\prime} m^{\prime} m$ but later) $I_{P} b m^{\prime} 2^{\prime}$ of $\mathrm{Ca}_{2} \mathrm{FeAlO}_{5}$. Thus we decided to refine the structure of $\mathrm{Ca}_{2} \mathrm{Fe}_{1.28} \mathrm{Al}_{0.72} \mathrm{O}_{5}$, expecting, at room temperature, to find about 70% of the $I_{P} b m^{\prime} 2^{\prime}$ structure and 30% of the $\mathrm{Pcm}^{\prime} \mathrm{n}^{\prime}$ structure (Geller, Grant \& Fullmer, 1970). We did not know the scale of the domains and so we tested both coherent ($I \sim|F|$) and incoherent $\left(I \sim|F|^{2}\right)$ scattering models. We found that the best fit of $\left|F_{c}\right| v s .\left|F_{o}\right|$ was obtained when the structure was refined purely in Ibm 2 . This now presented difficulties in the interpretation of the results obtained by Mössbauer spectroscopy.

We next decided to refine the structure of the crystal with formula $\mathrm{Ca}_{2} \mathrm{Fe}_{1 \cdot 40} \mathrm{Al}_{0.60} \mathrm{O}_{5}$. Past investigations appeared to fix the transition from the primitive ortho-
rhombic structure characteristic of $\mathrm{Ca}_{2} \mathrm{Fe}_{2} \mathrm{O}_{5}$ to the body-centered orthorhombic structure characteristic of $\mathrm{Ca}_{2} \mathrm{FeAlO}_{5}$ at $0.60<x<0.66$ in $\mathrm{Ca}_{2} \mathrm{Fe}_{2-x} \mathrm{Al}_{x} \mathrm{O}_{5}$ (Smith, 1962; see also Newkirk \& Thwaite, 1958). It was therefore somewhat surprising to find that refinement of the structure of $\mathrm{Ca}_{2} \mathrm{Fe}_{1.40} \mathrm{Al}_{0.60} \mathrm{O}_{5}$ in Ibm 2 gave unequivocally better results than refinement in Pcmn. The question remained as to whether the compositions of these crystals were what they were thought to be. After this was checked, the results led to a better but not completely conclusive interpretation of the magnetic phase diagram (Geller et al., 1970; Geller et al., 1971).

Experimental

Single crystals of $\mathrm{Ca}_{2} \mathrm{Fe}_{2-x} \mathrm{Al}_{x} \mathrm{O}_{5}$, with $x=0.60$ and $x=0 \cdot 72$, were ground into spheres (Bond, 1951; Schuyff \& Hulscher, 1968; Crandall, 1970) and mounted along the crystallographic a axis for data collection. These crystals were from the same batches as those used for the Mössbauer experiments (Geller, Grant \& Fullmer, 1970). The cell parameters, determined from Buerger precession camera photographs, and other crystal data are listed in Table 1.
Geller et al. (1970) estimated the nominal composition to be within $x= \pm 0.01$ by comparing powder photographs of these crystals with those of powder specimens prepared by solid state reaction. Electron microprobe analyses were made of the crystals actually used for the collection of intensity data; synthetic $\mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Ca}_{2} \mathrm{Fe}_{2} \mathrm{O}_{5}$ were used as standards and the computer program EMPADR VII (Rucklidge \& Gasparrini, 1969) for data reduction. This gave compositions of $\mathrm{Ca}_{2} \mathrm{Fe}_{1.43} \mathrm{Al}_{0.57} \mathrm{O}_{5}$ and $\mathrm{Ca}_{2} \mathrm{Fe}_{1.38} \mathrm{Al}_{0.72} \mathrm{O}_{5}$ for the two crystals, with estimated standard error in $x=$ $\pm 0 \cdot 03$.

For a crystal with $x=0.72,353$ reflections were collected using a Buerger-Supper-Pace-Picker automated diffractometer, Mo $K \alpha$ radiation, $\mathrm{Zr}-\mathrm{Y}$ balanced filters, and a scan rate of 2 deg. min^{-1}. Background counts were taken at $\frac{1}{6}$ the scan time on both sides of the peak for each filter. Relative $\left|F_{o}\right|^{2}$ were obtained from the intensities by application of the Lorentz-pol-arization-Tunell and absorption factors (Bond, 1959). For a crystal with $x=0 \cdot 57,346$ reflections were collected and $\left|F_{o}\right|^{2}$ obtained in the same manner as for the crystal with $x=0.72$.

Structure refinement

Refinement was carried out with the least-squares program of Busing, Martin \& Levy (1962), modified by

Ibers, Johnson, Ellison \& Levy to include site occupancy refinement and the contribution from the imaginary parts of the scattering factors. The scattering factors were those of Tokonami (1965) for O^{2-}; those of Tomiie \& Stam (1958) for Al^{3+} and Ca^{2+} and those of Watson \& Freeman (1961) for Fe^{3+}. These were corrected for the real parts of anomalous dispersion (Cromer, 1965). With starting atomic positions of brownmillerite (Colville \& Geller, 1971), refinement in space group Ibm 2 led to an agreement index of 0.029 ; whereas, with starting atomic parameters from $\mathrm{Ca}_{2} \mathrm{Fe}_{2} \mathrm{O}_{5}$ (Colville, 1970) and space group Pcmn an agreement index of 0.15 was obtained. Thus the most probable space group is $I b m 2$. Observed and calculated st:ucture amplitudes are listed in Table 2. The site occupancy refinement gave a distribution formula of $\mathrm{Ca}_{2}\left[\mathrm{Fe}_{0.83} \mathrm{Al}_{0.17}\right]\left(\mathrm{Fe}_{0.45} \mathrm{Al}_{0.55}\right) \mathrm{O}_{5}^{*}$ with standard error ± 0.01.
For the $\mathrm{Ca}_{2} \mathrm{Fe}_{1 \cdot 40} \mathrm{Al}_{0.60} \mathrm{O}_{5}$, the procedure was the same as that used for $\mathrm{Ca}_{2} \mathrm{Fe}_{1.28} \mathrm{Al}_{0.72} \mathrm{O}_{5}$. Refinement in space group Pcmn gave an agreement factor of $0 \cdot 19$, while refinement in space group $\mathrm{Ibm2}$ gave an agreement factor of 0.032 . The site refinement gave a distribution formula of $\mathrm{Ca}_{2}\left[\mathrm{Fe}_{0.83} \mathrm{Al}_{0.17}\right]\left(\mathrm{Fe}_{0.45} \mathrm{Al}_{0.55}\right) \mathrm{O}_{5}$. The atomic positions are virtually the same as those of crystals with composition $x=0.72$. as all positional parameters are within the standard crrors.

The atomic parameters are given in Table 3. Bond lengths and angles (Table 4) were calculated with the Busing, Martin \& Levy (1964) ORFFE program. Standard errors include contributions from errors in the cell parameters.

Discussion

The results of this investigation show that both $\mathrm{Ca}_{2} \mathrm{Fe}_{1.43} \mathrm{Al}_{0.57} \mathrm{O}_{5}$ and $\mathrm{Ca}_{2} \mathrm{Fe}_{1.28} \mathrm{Al}_{0.72} \mathrm{O}_{5}$ are isostructural with brownmillerite (Colville \& Geller, 1971). All belong to space group Ibm2. Because $\mathrm{Ca}_{2} \mathrm{Fe}_{2} \mathrm{O}_{5}$ belongs to space group Pcmn, the transition \dagger to the Ibm 2 structure must occur at a composition between $\mathrm{Ca}_{2} \mathrm{Fe}_{2} \mathrm{O}_{5}$ and $\mathrm{Ca}_{2} \mathrm{Fe}_{1.43} \mathrm{Al}_{0.57} \mathrm{O}_{5}$. In plots of chemical composition vs. cell parameters, Newkirk \& Thwaite (1958) found changes in slope near $x=0.66$. Smith (1962) corroborated these results with similar plots. He also followed the decrease of intensities of $h 0 l$, $h+l=2 n+1$, reflections with increasing aluminum con-

[^1]Table 1. Crystal data for $\mathrm{Ca}_{2} \mathrm{Fe}_{2-x} \mathrm{Al}_{x} \mathrm{O}_{5} ; x=0.57$ and 0.72

	$x=0.57$	$x=0.72$
a	$5.588(5) \AA$	$5.583(5) \AA$
b	$14.61(2)$	$14.58(2)$
c	$5.380(5)$	$5.374(5)$
$\varrho_{\text {ca1 }}$,	$3.85 \mathrm{~g} . \mathrm{cm}^{-3}$	$3.82 \mathrm{~g} . \mathrm{cm}^{-3}$
Space group	$I b m 2$	$I b m 2$

	$x=0.57$	$x=0.72$
	254.54	251.08
F.W.	$439.23 \AA^{3}$	$437.44 \AA^{3}$
Volume	4	4
Z	$70.45 \mathrm{~cm}^{-1}$	$67.35 \mathrm{~cm}^{-1}$
μ_{l} (Mo $K \alpha$)	$0.111 \mathrm{~mm}^{2}$	$0.125 \mathrm{~mm}^{2}$
Crystal radius		

tent. He concluded that crystals with $x \leq 0.60$ belong to space group Pcmn and those with $x \geq 0.66$ belong to Imma $\equiv \equiv$ Icmm $]$. From the combined results, we must conclude that the transition must occur at a value of x near $0.57 \pm 0 \cdot 03$, but surely at $x<0 \cdot 60$.
The magnetic space groups of $\mathrm{Ca}_{2} \mathrm{Fe}_{1.43} \mathrm{Al}_{0.57} \mathrm{O}_{5}$ and $\mathrm{Ca}_{2} \mathrm{FeAlO}_{5}$ are different inasmuch as in the former the spins are parallel to the a axis, while in the latter they are parallel to the c axis. Assuming in all cases that the chemical and magnetic unit cells are the same (as they proved to be for $\mathrm{Ca}_{2} \mathrm{Fe}_{2} \mathrm{O}_{5}$), the magnetic space groups are $I_{P} b^{\prime} m^{\prime} 2$ for $\mathrm{Ca}_{2} \mathrm{Fe}_{1.43} \mathrm{Al}_{0.57} \mathrm{O}_{5}$ (Geller. Grant \& Colville, 1972) and $I_{P} b m^{\prime} 2^{\prime}$ for $\mathrm{Ca}_{2} \mathrm{FeAlO}_{5}$ (Geiler, Grant \& Colville, 1971).

The nature of the intermediate region in which it was believed that two magnetic structures coexisted will be discussed in detail elsewhere (Geller et al., 1972). We give conclusions briefly here. There are now two possibilities for $\mathrm{Ca}_{2} \mathrm{Fe}_{1.28} \mathrm{Al}_{0.72} \mathrm{O}_{5}$ and other compositions lying between the boundaries of the pure $I_{p} b^{\prime} m^{\prime} 2$ and $I_{P} b m^{\prime} 2^{\prime}$ structures. One possibility is still the coexistence of the $I_{P} b^{\prime} m^{\prime} 2$ and $I_{P} b m^{\prime} 2^{\prime}$ structures and spin flipping as temperature is increased. In this case the system is more nearly analogous (but sec Geller, et al., 1972) to that of $\mathrm{CaFe}_{2-x} \mathrm{Cr}_{x} \mathrm{O}_{4}$ investigated by Corliss, Hastings \& Kunnmann (1967) than herctofore (Geller et al., 1970) supposed. The other possibility is a continuous transition similar to that of ErFeO_{3} (Grait \& Geller,

Table 2. Observed and calculated structure amplitudes for $\mathrm{Ca}_{2} \mathrm{Fe}_{1 \cdot 28} \mathrm{Al}_{0.72} \mathrm{O}_{5}$ The reflections marked with an asterisk were given low weights.

Table 3. Parameters and standard errors for $\mathrm{Ca}_{2} \mathrm{Fe}_{2-x} \mathrm{Al}_{x} \mathrm{O}_{5} ; x=0.57$ and 0.72

Site		Ca	[Fe Al]	(AlFe)	$\mathrm{O}(1)$	$\mathrm{O}(2)$	$\mathrm{O}(3)$
		8 (c)	4(a)	4(b)	8(c)	8(c)	4(b)
x	(1)*	$0 \cdot 0270$ (1)	0	0.9293 (2)	0.2533 (8)	0.0687 (6)	0.8668 (8)
	(2)	$0 \cdot 0270$ (2)	0	$0 \cdot 9291$ (2)	0.2525 (9)	0.0683 (6)	$0 \cdot 8653$ (9)
y	(1)	$0 \cdot 1084$ (1)	0	\pm	0.9856 (2)	0.1429 (2)	$\frac{1}{4}$
	(2)	$0 \cdot 1084$ (1)	0	$\frac{1}{4}$	0.9859 (2)	0.1429 (3)	$\frac{1}{4}$
z	(1)	0.4910 (3)	0.0000	$0 \cdot 9516$ (4)	$0 \cdot 2520$ (8)	0.0269 (8)	0.6147 (9)
	(2)	0.4907 (3)	0.0000	$0 \cdot 9520$ (4)	$0 \cdot 2503$ (9)	0.0256 (9)	0.6133 (9)
β_{11}	(1)	0.0033 (2) \dagger	$0 \cdot 0003$ (3)	$0 \cdot 0024$ (3)	0.0030 (7)	0.0037 (7)	0.0050 (12)
	(2)	0.0050 (2)	0.0018 (3)	$0 \cdot 0028$ (4)	0.0030 (8)	0.0048 (8)	$0 \cdot 0) 77$ (14)
β_{22}	(1)	0.0006 (1)	$0 \cdot 0007$ (1)	$0 \cdot 0002$ (1)	0.0008 (1)	0.0011 (1)	0.0006 (2)
	(2)	0.0008 (1)	$0 \cdot 0010$ (1)	$0 \cdot 0004$ (1)	0.0013 (1)	0.0014 (1)	0.0008 (2)
β_{33}	(1)	0.0084 (3)	0.0021 (4)	$0 \cdot 0026$ (4)	0.0054 (9)	0.0088 (13)	$0 \cdot 0058$ (16)
	(2)	0.0107 (2)	0.0051 (4)	$0 \cdot 0045$ (5)	0.0093 (11)	0.0132 (15)	$0 \cdot 0060$ (16)
β_{12}	(1)	0.0001 (1)	$0 \cdot 0000$ (1)	0	-0.0001 (4)	0.0002 (2)	0
	(2)	0.0001 (1)	-0.0001 (1)	0	0.0001 (4)	0.0035 (3)	0
β_{13}	(1)	0.0001 (1)	0	-0.0002 (3)	-0.0013 (7)	-0.0007 (9)	$-0.0002(11)$
	(2)	0.0001 (1)	0	-0.0001 (3)	0.0000 (1)	-0.0015 (10)	0.0007 (12)
β_{23}	(1)	-0.0001 (1)	0	0	-0.0004 (3)	0.0005 (3)	0
	(2)	0.0000 (1)	0	0	-0.0005 (4)	$0 \cdot 0006$ (3)	0

* (1) is for $x=0.57$ and (2) is for $x=0.72$.
\dagger Form of the temperature factor is: $T=\exp \left[-\left(h^{2} \beta_{11}+k^{2} \beta_{22}+l^{2} \beta_{33}+2 h k \beta_{12}+2 h l \beta_{13}+2 k l \beta_{23}\right)\right]$.

Table 4. Interatomic distances and angles in $\mathrm{Ca}_{2} \mathrm{Fe}_{2-x} \mathrm{Al}_{x} \mathrm{O}_{5} ; x=0.57$ and 0.72

(Al, Fe) tetrahedron	$x=0.57$	$x=0.72$		$x=0.57$	$x=0.72$
(Al, Fe)-O(2) (2)	1.794 (4)	1.788 (4)*	$\mathrm{O}(2)-(\mathrm{Al}, \mathrm{Fe})-\mathrm{O}(2) 1$	$121 \cdot 3$ (2)	121.6 (2)
(Al, Fe)-O(3)	1.846 (6)	1.855 (6)	$\mathrm{O}(2)-(\mathrm{Al}, \mathrm{Fe})-\mathrm{O}(3)$	$107 \cdot 7$ (1)	$107 \cdot 5$ (1)
(Al, Fe)--O(3) $4 \dagger$	$1 \cdot 873$ (6)	1.858 (6)	$\mathrm{O}(2)-(\mathrm{Al}, \mathrm{Fe})-\mathrm{O}(3) 4$ (2)	106.1 (1)	$106 \cdot 3$ (1)
			$\mathrm{O}(3)-(\mathrm{Al}, \mathrm{Fe})-\mathrm{O}(3) 4$	$107 \cdot 0$ (2)	$106 \cdot 7$ (1)
$\mathrm{O}(2)-\mathrm{O}(2) 1$	3.130 (8)	$3 \cdot 121$ (8)			
$\mathrm{O}(2)-\mathrm{O}(3)$	2.939 (6)	2.937 (6)			
$\mathrm{O}(2)-\mathrm{O}(3) 4$	$2 \cdot 932$ (6)	2.919 (6)			
$\mathrm{O}(3)-\mathrm{O}(3) 4$	2.991 (6)	$2 \cdot 980$ (5)			
[$\mathrm{Fe}, \mathrm{Al}]$ octahedron					
[$\mathrm{Fe}, \mathrm{Al}]-\mathrm{O}(1)$ (2)	$1 \cdot 971$ (5)	1.959 (5)	$\mathrm{O}(1)-\mathrm{Fe}, \mathrm{Al}-\mathrm{O}(2)$	$85 \cdot 9$ (1)	$85 \cdot 9$ (1)
$[\mathrm{Fe}, \mathrm{Al}]-\mathrm{O}(1) 3$ (2)	1.930 (5)	1.937 (5)	$\mathrm{O}(1)-\mathrm{Fe}, \mathrm{Al}-\mathrm{O}(1) 2$	$93 \cdot 1$ (1)	$93 \cdot 3$ (1)
[$\mathrm{Fe}, \mathrm{Al}]-\mathrm{O}(2)$	$2 \cdot 128$ (5)	$2 \cdot 123$ (4)	$\mathrm{O}(1)-\mathrm{Fe}, \mathrm{Al}-\mathrm{O}(1) 5$	$87 \cdot 2$ (1)	$87 \cdot 2$ (1)
			$\mathrm{O}(2)-\mathrm{Fe}, \mathrm{Al}-\mathrm{O}(1) 2$	88.7 (1)	$89 \cdot 0$ (1)
			$\mathrm{O}(2)-\mathrm{Fe}, \mathrm{Al}-\mathrm{O}(1) 3$	93.9 (1)	$93 \cdot 9$ (1)
			$\mathrm{O}(2)-\mathrm{Fe}, \mathrm{Al}-\mathrm{O}(1) 5$	91.4 (1)	$92 \cdot 2$ (1)
$\mathrm{O}(1)-\mathrm{O}(2)$	2.795 (5)	2.786 (5)			
$\mathrm{O}(1)-\mathrm{O}(1) 1$	$2 \cdot 862$ (9)	2.849 (10)			
$\mathrm{O}(1)-\mathrm{O}(1) 5$	2.690 (4)	2.687 (3)			
$\mathrm{O}(2)-\mathrm{O}(1) 2$	$2 \cdot 869$ (6)	$2 \cdot 863$ (6)			
$\mathrm{O}(2)-\mathrm{O}(1) 3$	$2 \cdot 970$ (6)	$2 \cdot 971$ (6)			
$\mathrm{O}(2)-\mathrm{O}(1) 5$	$2 \cdot 908$ (5)	$2 \cdot 904$ (5)			
Ca polyhedron					
$\mathrm{Ca}-\mathrm{O}(1)$	2.544 (4)	2.538 (4)	$\mathrm{Ca}-\mathrm{O}(2)$	2.569 (5)	$2 \cdot 560$ (5)
$\mathrm{Ca}-\mathrm{O}(1) 2$	2.448 (4)	2.448 (5)	$\mathrm{Ca}-\mathrm{O}(2) 5$	$2 \cdot 323$ (4)	$2 \cdot 322$ (4)
$\mathrm{Ca}-\mathrm{O}(1) 5$	2.588 (4)	2.579 (4)	$\mathrm{Ca}-\mathrm{O}(3)$	$2 \cdot 350$ (3)	$2 \cdot 347$ (4)
$\mathrm{Ca}-\mathrm{O}(1) 3$	$2 \cdot 489$ (4)	2-4.89 (4)			
Cation-cation					
[$\mathrm{Fe}, \mathrm{Al}]-[\mathrm{Fe}, \mathrm{Al}] 5$	3.878 (3)	3.875 (3)	[$\mathrm{Fe}, \mathrm{Al}]-\mathrm{O}(1)-[\mathrm{Fe}, \mathrm{Al}]$	$167 \cdot 0$ (2)	167.9 (2)
[$\mathrm{Fe}, \mathrm{Al}]-(\mathrm{Al}, \mathrm{Fe})$	3.683 (3)	3.675 (2)	$[\mathrm{Fe}, \mathrm{Al}]-\mathrm{O}(2)-(\mathrm{Al}, \mathrm{Fe})$	138.0 (2)	$139 \cdot 9$ (2)
(Al, Fe)-(Al, Fe)	$3 \cdot 354$ (3)	3.350 (3)	$(\mathrm{Al}, \mathrm{Fe})-\mathrm{O}(3)-(\mathrm{Al}, \mathrm{Fe})$	128.4 (2)	128.9 (3)

* Frequency of occurrence, distance (\AA) or angle (${ }^{\circ}$), (estimated standard error).
\dagger Symmetry transforms are numbered as follows:

$$
1: x, \frac{1}{2}-x, z ; \quad 2: \bar{x}, \bar{y}, z ; \quad 3: \frac{1}{2}+x, y, \frac{1}{2}+z ; \quad 4: \frac{1}{2}-x, \frac{1}{2}-y, \frac{1}{2}+z ; \quad 5: \frac{1}{2}-x, y, \frac{1}{2}+z .
$$

1969) from $I_{P} b^{\prime} m^{\prime} 2$ to $I_{P} b m^{\prime} 2^{\prime}$ with increasing temperature. In this case, there is a fourth magnetic structure with magnetic space group $C_{p} m^{\prime}$ involved and it is this structure* that exists in the intermediate region, which in accord with the ErFeO_{3} case may be called a 'spin reorientation' region (with respect both to temperature and composition).

As mentioned carlier the analogous parameter values for the two crystals reported here do not differ significantly; thus the interatomic distances and angles of the two do not differ significantly. However, the mean cation-oxygen distances are in accord with the aluminum conterits (Table 5).

[^2]Table 5. Mean cation-oxygen distances (\AA) in $\mathrm{Ca}_{2} \mathrm{Fe}_{2-x} \mathrm{Al}_{x} \mathrm{O}_{5}$

x	Tetrahedral	Octahedral	Ca^{2+}
0.00	1.878	2.016	2.480
0.57	1.827	2.010	2.473
0.72	1.822	2.007	2.469
1.00	1.797	2.001	2.461

Estimated standard errors are 0.005 .

The crystalline specimens of $\mathrm{Ca}_{2} \mathrm{Fe}_{2-x} \mathrm{Al}_{x} \mathrm{O}_{5}, x=$ $0.57,0.72,1.00$ were prepared under very nearly the same conditions (Geller, Grant \& Fullmer, 1970; Grant et al., 1968). The structure analyses indicate that in all cases, the fraction, f_{t}, of Al^{3+} ions in tetrahedral sites is $0.75-0.76$.* If 0.76 is assumed to be the value for all specimens with $x \geq 0.57$ prepared in this same manner, then when the tetrahedral sites are filled with Al^{3+} ions, x will be $1 \cdot 32$. At higher temperatures, a lower percentage of Al^{3+} ions go into tetrahedral sites (Colvillc \& Geller, 1971); for brownmillerite quenched from $1290^{\circ} \mathrm{C}, f_{t}=0 \cdot 68$. If we assume that this is constant for all specimens quenched from $1290^{\circ} \mathrm{C}$, the tetrahedral sites will be filled with Al^{3+} ions when $x=$ 1.47. The maximum attainable Al^{3+} ion content appears to be within this range, that is, $1 \cdot 32-1 \cdot 47$ (see discussion and references in Geller, Grant \& Gonser, 1971). It would seem that temperature and the filling of the tetrahedral sites with Al^{3+} ions determine the maximum Al^{3+} ion content.

The recent appearance of a paper entitled Refinement of the Crystal Structure of Dicalcium Ferrite $\mathrm{Ca}_{2} \mathrm{Fe}_{2} \mathrm{O}_{5}$,

[^3] until the end-member $\mathrm{Y}_{3} \mathrm{Al}_{2} \mathrm{Al}_{3} \mathrm{O}_{12}$ is reached.
by Berggren (1971) has been called to our attention. This paper contains no essentially new conclusion relative to the Colville (1970) paper.

References

Berggren, J. (1971). Acta Chem. Scand. 25, 3616.
Bertaut, E. F., Blum, P. \& Sagnières, A. (1959). Acta Cryst. 12, 149.
Bond, W. L. (1951). Rev. Sci. Instrum. 22, 344.
Bond, W. L. (1959). Acta Cryst. 12, 375.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). ORFFE. Report ORNL-TM-306, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Büssem, W. (1937). Fortschr. Mineral. 22, 31.
Büssem, W. (1938). Proceedings of the Symposium of the Chemistry of Cement, Stockholm, p. 153.
Colville, A. A. (1970). Acta Cryst. B26, 1469.
Colville, A. A. \& Geller, S. (1971). Acta Cryst. B27, 2311.

Corliss, L. M., Hastings, J. M. \& Kunnmann, W. (1967). Phys. Rev. 160, 408.
Corliss, L. M., Hastings, J. M., Kunnmann, W. \& Banks, E. (1966). Acta Cryst. 21, A 95.
Crandall, P. B. (1970). Rev. Sci. Instrum. 41, 1895.
Cromer, D. T. (1965). Acta Cryst. 18, 17.
Friedman, Z., Shakad, H. \& Shtrikman, S. (1967). Phys. Letters 25A, 8.

Geller, S., Grant, R. W. \& Colville, A. A. (1971). Solid State Commun. 9, 1307.
Geller, S., Grant, R. W. \& Colville, A. A. (1972). J. Phys. Chem. Solids. In the press.

Geller, S., Grant, R. W. \& Fullmer, L. D. (1970). J. Phys. Chem. Solids, 31, 793.

Geller, S., Grant, R. W. \& Gonser, U. (1971). Prog. Solid State Chem. 5, 1.
Geller, S., Williams, H. J., Sherwood, R. C. \& Espinosa, G. P. (1964). Bell Syst. Tech. J. 43, 565.
Gonser, U., Grant, R. W., Wiedersich, H. \& Geller, S. (1966). Appl. Phys. Letters, 9, 18.

Grant, R. W. (1969). J. Chem. Phys. 51, 1156.
Grant, R. W. \& Geller, S. (1969). Solid State Commun. 1, 1291.
Grant, R. W., Geller, S., Wiedersich, H., Gonser, U. \& Fullmer, L. D. (1968). J. Appl. Phys. 39, 1122.
Newkirk, T. F. \& Thwaite, R. D. (1958). J. Res. Natl. Bur. Stand. 61, 233 (R.P. 2900).
Rucklidge, J. \& Gasparrini, E. L. (1969). Electron microprobe data reduction program ($E M P A D R$ VII). Dept. of Geology, Univ. of Toronto, Canada.
Schuyff, A. \& Hulscher, J. B. (1958). Rev. Sci. Instrum. 36, 957.
Smith, D. K. (1962). Acta Cryst. 15, 1146.
Takeda, T., Yamaguchi, Y., Tomiyoshi, S., Sukase, M., Sugimoto, M. \& Watanabe, H. (1968). J. Phys. Soc. Japan, 24, 446.
Tokonami, M. (1955). Acta Cryst. 19, 486.
Tomie, Y. \& Stam, C. Y. (1958). Acta Cryst. 11, 126.
Watson, R. E. \& Freeman, A. J. (1961). Acta Cryst. 14, 27.

The Crystal Structure of Clopidol (3,5-Dichloro-2,6-Dimethyl-4-Pyridinol)

By F. P. Boer
The Dow Chemical Company, Midland, Michigan 48640, U.S.A.

(Received 8 May 1972)

Abstract

Clopidol (3,5-dichloro-2,6-dimethyl-4-pyridinol), $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{NO}$, is a commercially successful anticoccidial. The crystal and molecular structure of this heterocycle have been determined by single-crystal X-ray diffraction methods. Clopidol crystallizes (usually with twinning) in space group $P 2_{1} / m$ with $a=$ $6.795 \pm 0.009, b=6.932 \pm 0.013, c=8.746 \pm 0.015 \AA, \beta=103.56 \pm 0.07^{\circ}$, and $Z=2$. X-ray intensity data were gathered on a Picker automatic four-circle diffractometer (Mo $K \alpha$ radiation) using both the $\theta-2 \theta$ and ω scan techniques. The crystal structure was solved from the Patterson function and refined by full-matrix least-squares methods assuming anisotropic temperature factors for the nonhydrogen atoms. The final R values were $R_{1}=4.4$ and $R_{2}=3.5 \%$ for the 421 reflections above background. The molecules are situated on the crystallographic mirror planes at $y=\frac{1}{4}$ and $\frac{3}{4}$, and form infinite hydrogenbonded chains in the a direction. From the bond lengths and the location of the nonmethyl hydrogen atom, clopidol is shown to exist as the pyridone tautomer in the crystalline state.

3,5-Dichloro-2,6-dimethyl-4-pyridinol, or clopidol, is the active ingredient in a commercially sucessful anticoccidial* used to control coccidiosis in chickens. Since clopidol is in principle able to exist in forms (I)-(III) and because the nature of the hydrogen-bonding system in the crystalline state was not known, a three-dimensional

* COYDEN ${ }^{\circledR}$, Trademark of The Dow Chemical Company, Midland, Michigan.

X-ray diffraction study of its crystal structure was undertaken.

[^0]: * Part of the work reported here was performed while the authors were associated with the North American Rockwell Science Center, Thousand Oaks, California- (A.A.C. was on leave from California State College.)

[^1]: * Throughout this paper [] and () refer to octahedral and tetrahedral sites respectively.
 \dagger Because Pcmn contains a symmetry element not in Ibm 2 and $\operatorname{Ibm} 2$ contains a symmetry element not in Pcmn, neither is a subgroup of the other; thus the transition is first order.

[^2]: * It should be realized that in a sense there are an infinite number of structures in this region; the spin directions presumably change with each infinitesimal change in temperature or composition.

[^3]: * This is much different from the aluminum substituted yttrium iron garnet system (Geller, Williams, Sherwood \& Espinosa, 1964) in which f_{t} for Al^{3+} decreases continuously

